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Abstract
Solutions of the q-deformed Schrödinger equation are presented for the
following potentials: shifted oscillator, isotropic oscillator, Rosen–Morse II,
Eckart II, and Poschl–Teller I and II potentials. Various properties of solutions
to such equations are discussed including the limit case q → 1 that corresponds
to the non-deformed Schrödinger equation.

PACS numbers: 02.70.Bf, 02.30.Gp, 02.30.Ks, 02.30.Hq

1. Introduction

In this paper, we study the solution of the eigenvalue problem

−∂2
qψ(x) + W(x)∂q + V (x)ψ(x) = Eψ(x), (1.1)

where 0 < q < 1 and

∂qψ(x) := ψ(x) − ψ(qx)

(1 − q)x
, (1.2)

for the family of the second-order q-difference operators which include q-Schrödinger
operators with potentials being a q-deformation of the shifted oscillator, isotropic oscillator,
Rosen–Morse II, Eckart II, and Poschl–Teller I and II potentials.

Our investigation will be based on the factorization method [12] as well as on the theory of
the classical q-orthogonal polynomials related to q-difference Hahn equation [11, 13]. In the
limit q → 1, the q-difference equation (1.1) becomes the second-order differential equation
which could be interpreted as one-dimensional Schrödinger equation or the radial part of
the three-dimensional Schrödinger equation. Another motivation for the investigation of the
problem in question is related to the possibility to use the q-difference equation (1.1) as an
intermediate step for the numerical treatment of the corresponding differential equation. There
is also some mathematical reason, since spectral analysis of the second-order q-difference
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operators gives a link between the theory of q-special functions [8] and spectral analysis of
Jacobi-type operators [16].

The content of the paper is following. In section 2, we construct the chain of Hilbert
spaces Hk, k ∈ N ∪ {0}, of functions which are square integrable with respect to the Jackson
q-integral with a weight function. It is also shown that in the limit q → 1 one obtains Hilbert
spaces related to the classical orthogonal polynomials as well as to the eigenvalue problems
for the Schrödinger operators.

The family of solutions of the eigenvalue problem of the corresponding q-difference
Schrödinger operators Hk : Hk → Hk with various potentials is presented in section 3. All
these solutions are expressed in terms of the basic hypergeometric series.

2. A chain of the factorized q-difference operators

Let us consider the sequence of the vector spaces Vk, k ∈ N ∪ {0}, consisting of the complex-
valued functions ψ : [a, b]q → C on the q-interval

[a, b]q := {qna : n ∈ N ∪ {0}} ∪ {qnb : n ∈ N ∪ {0}}. (2.1)

We also assume that Vk are equipped with the scalar products

〈ψ |ϕ〉k :=
∫ b

a

ψ(x)ϕ(x)�k(x) dqx (2.2)

defined by Jackson q-integral [8]∫ b

a

ψ(x) dqx :=
∞∑

n=0

(1 − q)qnbψ(qnb) −
∞∑

n=0

(1 − q)qnaψ(qna) (2.3)

taken over [a, b]q and dependent on the weight function �k : [a, b]q → R, where 0 < q < 1.
In the case when a = 0 and b = ∞, by the definition one assumes∫ ∞

0
ψ(x) dqx := lim

n→∞

∫ q−n

0
ψ(x) dqx =

∞∑
n=−∞

(1 − q)qnf (qn) (2.4)

and in the case if a = −∞ and b = ∞ we define∫ ∞

−∞
ψ(x) dqx := lim

n→∞

∫ q−n

−q−n

ψ(x) dqx =
∞∑

n=−∞
(1 − q)qnψ(qn) +

∞∑
n=−∞

(1 − q)qnψ(−qn),

(2.5)

see [8]. Let us remark here that the scalar products (2.2) are not positively defined in the
general case.

The main object of our considerations will be the sequence

Hk = Zk(x)∂qQ
−1∂q + Wk(x)∂q + Vk(x), (2.6)

k ∈ N ∪ {0}, of the q-difference operators Hk : Vk → Vk symmetric

〈ψ |Hkϕ〉k = 〈Hkψ |ϕ〉k (2.7)

with respect to the scalar products (2.2), where ψ, ϕ ∈ D(Hk). The definition of the domain
D(Hk) for Hk will be given below. Condition (2.7) gives the following relationships:

∂q(Zk�k) = Wk�k, (2.8)

Zk�k(ψ̄Q−1∂qϕ − ϕQ−1∂qψ̄)|ba= 0 (2.9)
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for the functions Zk,Wk and �k , where (2.9) holds for any ψ and ϕ from D(Hk). Let us note
here that q[a, b]q ⊆ [a, b]q . Hence, the q-difference operators

Qψ(x) := ψ(qx), (2.10)

∂qψ(x) := ψ(x) − ψ(qx)

(1 − q)x
, (2.11)

and thus the q-difference operator (2.6), are correctly defined in Vk .
Assuming in (2.6) that

Zk(x) = −q−2kγ +γ−1

[γ ]2
x2(1−γ )Bk(x)(1 + (1 − qγ )qkγ−γ xγ fk(q

−1x)), (2.12)

Wk(x) = q−kγ

[γ ]
x1−γ

(
Bk(x)

(
fk(x) − q−1fk(q

−1x) − [1 − γ ]

[γ ]
q−kγ +γ−1x−γ

)

−Ak(1 + (1 − qγ )qkγ xγ fk(x))

)
, (2.13)

Vk(x) = −q−kγ

[γ ]
x1−γ Bk(x)∂qQ

−1fk(x) − Ak(x)fk(x)(1 + (1 − qγ )qkγ xγ fk(x))

+ Bk(x)f 2
k (x) + ak, (2.14)

we factorize

Hk = Ak
∗Ak + ak, ak ∈ R, (2.15)

the second-order operators Hk as a product of two first-order q-difference operators Ak : Vk →
Vk−1 and A∗

k : Vk−1 → Vk given by

Ak = q−kγ

[γ ]
x1−γ ∂q + fk, (2.16)

A∗
k =

(
q−kγ

[γ ]
x1−γ ∂q + fk

)∗

= −q−kγ

[γ ]
x1−γ Bk∂qQ

−1 + Bkfk − Ak(1 + (1 − qγ )qkγ xγ fk), (2.17)

where as usual [γ ] := 1−qγ

1−q
, see [6, 7, 9, 10]. In the following, according to [6], we will

assume that

Bk(x) = q2kγ−kx2(γ−1)B(qkx), (2.18)

Ak(x) = qkγ−k

1 − qγ
xγ−2(B(qkx) − q2k(1−γ )B(x)), (2.19)

fk(x) = q−k+ γ−1
2

(1 − qγ )xγ

√
D(qx)

B(x)
− 1

(1 − qγ )qkγ xγ
, (2.20)

where

B(x) = b2x
2 + b1x + b0, (2.21)

D(x) = (b2 + (1 − qγ )[γ ]q−γ (a0 − a1))x
2 + (b1 + (1 − qγ )c)x + b0, (2.22)
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b0, b1, b2, c, a0, a1 ∈ R and γ > 1. We require that the parameters a0, a1, c, b0 do not depend
on q.

Now, let us fix a solution ψ0
k of the q-difference equation

Akψ
0
k = 0 (2.23)

and choose �k : [a, b]q → R in such a way which ensure the positivity of the scalar product

〈ψk|ψk〉k :=
∫ b

a

|Pk(x)|2∣∣ψ0
k (x)

∣∣2
�k(x) dqx, (2.24)

for ψk = Pkψ
0
k ∈ Vk . Then, we define the unitary space

Hk := {
Pkψ

0
k ∈ Vk : 〈ψk|ψk〉k < +∞}

, (2.25)

which in special case could be Hilbert space. If it is not the case, we complete Hk to be the
Hilbert space by the standard completion procedure. Restricting the operator Hk : Hk → Hk

(2.6) to the space Hk and keeping in the mind the factorization conditions (2.12), (2.13)
and (2.14) we find that the symmetricity conditions (2.8) and (2.9) for Hk take the following
form:

∂q

(
q−kγ

[γ ]
x1−γ Bk�k

)
= Ak�k, (2.26)

x1−2γ Bk�k

∣∣ψ0
k

∣∣2
(P̄kQ

−1Rk − RkQ
−1P̄k)

∣∣b
a

= 0, (2.27)

for Pkψ
0
k , Rkψ

0
k ∈ D(Hk) ⊂ Hk .

In order to avoid such restrictive condition on the domain D(Hk), we replace (2.27) by
the stronger condition

x1−2γ Bk�k

∣∣ψ0
k

∣∣2∣∣b
a

= 0, (2.28)

which one can consider as a boundary condition for the q-Person equation (2.26).
In the limit q → 1, since ∂q → d

dx
, the operator (2.15) tends to the second-order ordinary

differential operator

H1
k = A1

k

∗
A1

k + a1
k , (2.29)

with the operators A1
k and A1

k

∗
given by

A1
k = γ −1x1−γ d

dx
+

2k(γ −1 − 1) − 1

2xγ
+

(
γ a0 − γ a1 − γ −1b1

2

)
x2 + cx + γ −1b0

2xγ B1(x)
, (2.30)

A1
k

∗ = −γ −1xγ−1B1(x)
d

dx
+ kγ −1xγ−1

(
d

dx
B1(x)

)

+
(2k(1 − γ −1) − 1)B1(x) +

(
γ a0 − γ a1 − γ −1b1

2

)
x2 + cx + γ −1b0

2x2−γ
. (2.31)

These operators act in the Hilbert space H1
k which consists of the complex-valued functions

square integrable with respect to the scalar product

〈
ψ1

k

∣∣ψ1
k

〉
k

:=
∫ b

a

∣∣P 1
k (x)

∣∣2∣∣1ψ0
k (x)

∣∣2
�1

k(x) dx, (2.32)

obtained from (2.24) when q → 1. Let us note here that the set [a, b]q becomes the usual
interval which we denote by [a, b]1 and the q-integrals (2.3), (2.4) and (2.5) converge to the
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corresponding standard integrals in the limit q → 1 and �1
k = limq→1 �k . The parameters b1

2
and b1

1 appearing in (2.30) and (2.31) are defined by

B1(x) := b1
2x

2 + b1
1x + b0 = lim

q→1
B(x). (2.33)

In the limit case, when q → 1, we use the following notation:

ψ1
k (x) = P 1

k (x)1ψ0
k (x), (2.34)

where

P 1
k (x) = lim

q→1
Pk(x), (2.35)

1ψ0
k (x) = lim

q→1
ψ0

k (x). (2.36)

The solution of (2.23) takes the following form:

1ψ0
k (x) = Cxk(γ−1)+ γ

2 exp

(
−

∫ (
γ 2a0 − γ 2a1 − b1

2

)
x2 + γ cx + b0

2xB1(x)
dx

)
, (2.37)

when q → 1. The formula(
x
xi

; q
)
∞(

qx

yi
; q

)
∞

=
(

1 − x

x1
i

)− 1
x1
i

limq→1
qxi−yi

1−q

, (2.38)

where

(a; q)k = (1 − a)(1 − qa) · · · (1 − qk−1a), (2.39)

k ∈ N ∪ {∞} and i = 1, 2, will also be useful in the intermediate calculations.
Having defined Bk,Ak and fk by (2.18), (2.19) and (2.20) one obtains the families

of solutions of the q-Pearson equation (2.26) and equation (2.23). They are specified by
parameters b0, b1, b2, c, a0, a1 ∈ R. In formulae given below we denote the roots of the
polynomial B by x1 
= 0, x2 
= 0. Similarly, by y1 
= 0, y2 
= 0 we denote the roots of the
polynomial D. According to this notation one has the following list of the admissible scalar
products:

(i) If b2 
= 0, b0 
= 0 and b2 + (1 − qγ )[γ ]q−γ (a0 − a1) 
= 0, then

�k(x) = x(1−γ )(2k+1)(
x
x1

; q
)
k+1

(
x
x2

; q
)
k+1

, (2.40)

�1
k(x) = x(1−γ )(2k+1)

(x − x1)k+1(x − x2)k+1
, (2.41)

[a, b]q = [q−kx1, q
−kx2]q, x1 < x2, (2.42)

[a, b]1 = [x1, x2], (2.43)

ψ0
k (x) = Cx(γ−1)(k+ 1

2 )

√√√√ (
x
x1

; q
)
∞

(
x
x2

; q
)
∞(

qx

y1
; q

)
∞

(
qx

y2
; q

)
∞

, (2.44)

1ψ0
k (x) = Cx(γ−1)(k+ 1

2 )(x − x1)

2b2−γ 2(a0−a1)

4b2
−

γ 2b1(a0−a1)

2b2
−γ c

2
√

b2
1−4b2b0

× (x − x2)

2b2−γ 2(a0−a1)

4b2
−

γ 2b1(a0−a1)

2b2
−γ c

2
√

b2
1−4b2b0 . (2.45)
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(ii) If b2 
= 0, b0 
= 0, b2 + (1 − qγ )[γ ]q−γ (a0 − a1) = 0 and b1 + (1 − qγ )c 
= 0, then

�k(x) = x(1−γ )(2k+1)(
x
x1

; q
)
k+1

(
x
x2

; q
)
k+1

, (2.46)

�1
k(x) = x(1−γ )(2k+1)(

x + b0
b1

)k+1 , (2.47)

[a, b]q = [q−kx1, q
−kx2]q, (2.48)

[a, b]1 =
[
−b0

b1
,∞

]
, (2.49)

ψ0
k (x) = Cx(γ−1)(k+ 1

2 )

√√√√ (
x
x1

; q
)
∞

(
x
x2

; q
)
∞(−(

b1
b0

+ (1 − qγ ) c
b0

)
qx; q

)
∞

, (2.50)

1ψ0
k (x) = Cx(γ−1)(k+ 1

2 )

(
x +

b0

b1

) b1−cγ +γ 2(a0−a1)
b0
b1

2b1

exp

(
−γ 2(a0 − a1)

2b1
x

)
. (2.51)

(iii) If b2 
= 0, b0 
= 0, b2 + (1 − qγ )[γ ]q−γ (a0 − a1) = 0 and b1 + (1 − qγ )c = 0, then

�k(x) = x(1−γ )(2k+1)(
x
x1

; q
)
k+1

(
x
x2

; q
)
k+1

, (2.52)

�1
k(x) = x(1−γ )(2k+1), (2.53)

[a, b]q = [q−kx1, q
−kx2]q, (2.54)

[a, b]1 = [−∞,∞], (2.55)

ψ0
k (x) = Cx(γ−1)(k+ 1

2 )

√(
x

x1
; q

)
∞

(
x

x2
; q

)
∞

, (2.56)

1ψ0
k (x) = Cx(γ−1)(k+ 1

2 ) exp

(
−γ 2(a0 − a1)

4b0
x2 − γ c

2b0
x

)
. (2.57)

(iv) If b2 
= 0, b1 
= 0, b0 = 0, b2 + (1 − qγ )[γ ]q−γ (a0 − a1) 
= 0 and b1 + (1 − qγ )c 
= 0,
then

�k(x) = xk(1−2γ )−γ(− b2
b1

x; q
)
k+1

, (2.58)

�1
k(x) = xk(1−2γ )−γ

(x + b1
b2

)k+1
, (2.59)

[a, b]q =
[

0,−q−k b1

b2

]
q

for
b1

b2
< 0 or

[a, b]q =
[
−q−k b1

b2
, 0

]
q

for
b1

b2
> 0, (2.60)
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[a, b]1 =
[

0,−b1

b2

]
or [a, b] =

[
−b1

b2
, 0

]
, (2.61)

ψ0
k (x) = Cx

k(γ−1)+ γ

2 +logq

√
1+(1−qγ ) c

b1

√√√√ (− b2
b1

x; q
)
∞(− b2+(1−qγ )[γ ]q−γ (a0−a1)

b1+(1−qγ )c
qx; q

)
∞

, (2.62)

1ψ0
k (x) = Cx

k(γ−1)+ γ

2 − γ c

2b1

(
x +

b1

b2

)− γ 2(a0−a1)

2b2
+ γ c

2b1

. (2.63)

(v) If b2 
= 0, b1 
= 0, b0 = 0, b2 + (1 − qγ )[γ ]q−γ (a0 − a1) = 0 and b1 + (1 − qγ )c 
= 0,
then

�k(x) = xk(1−2γ )−γ(− b2
b1

x; q
)
k+1

, (2.64)

�1
k(x) = xk(1−2γ )−γ , (2.65)

[a, b]q =
[

0,−q−k b1

b2

]
q

for
b1

b2
< 0 or

[a, b]q =
[
−q−k b1

b2
, 0

]
q

for
b1

b2
> 0, (2.66)

[a, b]1 = [0,∞] or [a, b] = [−∞, 0], (2.67)

ψ0
k (x) = Cx

k(γ−1)+ γ

2 +logq

√
1+(1−qγ ) c

b1

√(
−b2

b1
x; q

)
∞

, (2.68)

1ψ0
k (x) = x

k(γ−1)+ γ

2 − cγ

2b1 exp

(
−γ 2(a0 − a1)

2b1
x

)
. (2.69)

(vi) If b2 = 0, b1 
= 0 and b0 
= 0, then

�k(x) = x(1−γ )(2k+1)(− b1
b0

x; q
)
k+1

, (2.70)

�1
k(x) = x(1−γ )(2k+1)

(x + b0
b1

)k+1
, (2.71)

[a, b]q =
[
−q−k b0

b1
,∞

]
q

, (2.72)

[a, b]1 =
[
−b0

b1
,∞

]
, (2.73)

ψ0
k (x) = Cx(γ−1)(k+ 1

2 )

√√√√ (− b1
b0

x; q
)
∞(

qx

y1
; q

)
∞

(
qx

y2
; q

)
∞

, (2.74)

1ψ0
k (x) = Cx(γ−1)(k+ 1

2 )

(
x +

b0

b1

)− γ c

2b1
+ γ 2b0(a0−a1)

2b2
1

+ 1
2

exp

(
−γ 2(a0 − a1)

2b1
x

)
. (2.75)
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(vii) If b2 = b0 = 0, b1 
= 0, a0 
= a1 and b1 + (1 − qγ )c 
= 0, then

�k(x) = xk(1−2γ )−γ , (2.76)

�1
k(x) = xk(1−2γ )−γ , (2.77)

[a, b]q = [0,∞]q, (2.78)

[a, b]1 = [0,∞], (2.79)

ψ0
k (x) = C

x
k(γ−1)+ γ

2 +logq

√
1+(1−qγ ) c

b1√(− (1−qγ )[γ ]q−γ (a0−a1)

b1+(1−qγ )c
qx; q

)
∞

, (2.80)

1ψ0
k (x) = Cx

k(γ−1)+ γ

2 − γ c

2b1 exp

(
−γ 2(a0 − a1)

2b1
x

)
. (2.81)

(viii) If b2 = b0 = 0, b1 
= 0, a0 
= a1 and b1 + (1 − qγ )c = 0, then

�k(x) = xk(1−2γ )−γ , (2.82)

[a, b]q = [0,∞]q, (2.83)

ψ0
k (x) = C

x
k(γ−1)+ γ +1

2 +logq

√
(1−qγ )[γ ]q−γ (a0−a1)

b1√
(−x; q)∞(−qx−1; q)∞

. (2.84)

In the limit q → 1 this case is divergent.
(ix) If b2 = b1 = 0 and b0 
= 0, then

�k(x) = x(1−γ )(2k+1), (2.85)

�1
k(x) = x(1−γ )(2k+1), (2.86)

[a, b]q = [−∞,∞]q, (2.87)

[a, b]1 = [−∞,∞], (2.88)

ψ0
k (x) = Cx(γ−1)(k+ 1

2 )

√
1(

qx

y1
; q

)
∞

(
qx

y2
; q

)
∞

, (2.89)

1ψ0
k (x) = Cx(γ−1)(k+ 1

2 ) exp

(
−γ 2(a0 − a1)

4b0
x2 − γ c

2b0
x

)
. (2.90)

In all the subcases presented above except of (iii) and (viii), taking the limit q → 1 we
have assumed that b1 does not depend on the parameter q. Similarly, in the all subcases except
of (ii), (iii), (v) we have assumed that b2 does not depend on the parameter q.

Let us now determine the values of the parameters b2, b1, b0, a0, a1, c for which the scalar
product (2.24) is positively defined∫ b

a

|Pk(x)|2∣∣ψ0
k (x)

∣∣2
�k(x) dqx > 0. (2.91)

In order to avoid of the cumbersome consideration we will restrict our attention to the
generic case (i), when b2 
= 0 and b0 
= 0. In this case, we obtain from (2.40) and (2.44) that
the positivity condition (2.91) for the scalar product is equivalent to

x1 < 0 < x2 (2.92)
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and 


(
qn−k+1x1

y1
; q

)
∞

(
qn−k+1x1

y2
; q

)
∞

> 0

(
qn−k+1x2

y1
; q

)
∞

(
qn−k+1x2

y2
; q

)
∞

> 0

(2.93)

for n, k ∈ N ∪ {0}. These conditions are fulfilled if either y1 = y2 or one of the following
inequalities

(a) y1 > qx2 and y2 > qx2,
(b) y1 < qx1 and y2 < qx1,
(c) y1 < qx1 and y2 > qx2

are satisfied.

3. The solution of the eigenvalue problem

The factorization method is known, see [12, 14], to be based on the following relation:

A∗
kAk + ak = Q−1Ak+1A∗

k+1Q + ak+1, k ∈ N ∪ {0}, (3.1)

which gives

Hk+1(A∗
k+1Qψk) = λk(A∗

k+1Qψk), (3.2)

provided that ψk ∈ Vk is a solution of the eigenvalue equation

Hkψk = λkψk. (3.3)

Particularly, if the function ψ0
k ∈ Vk satisfies (2.23) then

Hkψ
0
k = akψ

0
k (3.4)

and

Hk

(
A∗

kQ · · · A∗
k+1−nQψ0

k−n

) = ak−nA∗
kQ · · · A∗

k+1−nQψ0
k−n n = 1, . . . , k. (3.5)

One can show (see [6]) that the factorization relations (3.1) are fulfilled for Ak and A∗
k given

by (2.16), (2.17), (2.18), (2.19), (2.20), (2.21) and (2.22) if

ak = −q1−k

(
a0[k − 1] − a1[k] + qγ b2

[k − 1][k]

[γ ]2

)
. (3.6)

Keeping in mind the factorizing property (3.1) we look for the solutions

ψn
k (x) = P n

k (x)ψ0
k (x) (3.7)

of the eigenvalue equation (3.3) under the condition

λn
k = ak−n, (3.8)

where ak is given by (3.6). Substituting (3.7) into (3.3) and using (2.23) one obtains the
second-order q-difference equation

−q−1D(qx)P n
k (qx) − B(qkx)P n

k (q−1x) + (q−1D(qx) + B(qkx))P n
k (x)

= (1 − qn)(qb2 + (1 − qγ )[γ ]q−γ +1(a0 − a1) − q2k−nb2)x
2P n

k (x). (3.9)

for the function P n
k (x). Equation (3.9) is Hahn equation [11] solutions to which could be

expressed in terms of the basic hypergeometric series

3φ2

(
a1, a2, a3

d1, d2

∣∣∣∣q; x

)
:=

∞∑
k=0

(a1; q)k(a2; q)k(a3; q)k

(d1; q)k(d2; q)k(q; q)k
xk, (3.10)

see also [13].
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In the limit q → 1, equation (3.9) for the function 1P n
k (x) becomes the generalized

equation of hypergeometric type (see [15])

B1(x)
d2

dx2
1P n

k (x) − (
(γ 2a0 − γ 2a1 + 2b1

2(k − 1))x + γ c + b1
1(k − 1)

) d

dx

1P n
k (x)

+ (nγ 2(a0 − a1) + b2n(2k − n − 1))1P n
k (x) = 0 (3.11)

and the factorizing condition (3.6) has the form

a1
k = −a0(k − 1) + a1k − b1

2γ
−2k(k − 1). (3.12)

We show later that after appropriately chosen change of the variable the eigenvalue
problem for the operators (2.29) reduces to the wide class of the stationary Schrödinger
equations. So, it makes sense to consider the family (2.15) as q-deformation of this class of
Schrödinger operators. Thus, solving of (3.3) has a physical motivation too.

We look for the solutions of the eigenvalue problem for the operators (2.29) in the form
1ψn

k (x) = lim
q→1

ψn
k (x) = 1P n

k (x)1ψ0
k (x), (3.13)

where 1P n
k are solution (3.11) and 1ψ0

k is given by (2.37). Making the transformation
1ψn

k → ϕn
k defined by

1ψn
k (x) = (

x2(γ −1−1)B1(x)
) 2k+1

4 ϕn
k (z), (3.14)

dz = γ
dx

(B1(x))
1
2

, (3.15)

one maps the family of solutions 1ψn
k to the family of solutions ϕn

k of Schrödinger equation
with the suitable potentials Vk .

Summing up we shall present the solutions of (3.3) in consistency with the list of the
weight functions �k(x) and solutions ψ0

k (x) of (2.23) given in the previous section.

(i) Big q-Jacobi orthogonal polynomials. In this case, solutions of (3.9) are

P n
k (x) = 3φ2

(
q−n, q−2k+n+1 x1x2

y1y2
,

q

y1
x

q−k+1 x2
y1

, q−k+1 x1
y1

∣∣∣∣∣q; q

)
(3.16)

and the eigenvalues are

λn
k = a0[n − k + 1] − qa1[n − k] +

qγ b2

[γ ]2
[n − k + 1][k − n]. (3.17)

In the limit q → 1, equation (3.11) after the change of the variable y = 2 x−x1
x2−x1

− 1 can
be transformed into the equation for the Jacobi orthogonal polynomials and its solution
is given by

1P n
k (x) = P (αk,βk)

n (y) = (αk + 1)n

n!
2F1

(−n, n + αk + βk + 1
αk + 1

∣∣∣∣1 − y

2

)
, (3.18)

where

αk = −γ 2(a0 − a1)

b2
− k − γ (γ (a0 − a1)x1 + c)

b2(x2 − x1)
, (3.19)

βk = −1 +
γ (γ (a0 − a1)x1 + c)

b2(x2 − x1)
. (3.20)
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After the transformation (3.15) given by

x =
√




4b2
2

cosh(γ −1
√

b2(z − c)) − b1

2b2
(3.21)

or

x =
√




4b2
2

sin γ −1
√

|b2|z − b1

2b2
, (3.22)

we obtain the Schrödinger equation with the Rosen–Morse II potential (for b2 > 0)

Vk(z) = D1 coth γ −1
√

b2(z − c) cosech2 γ −1
√

b2(z − c)

+ D2 cosech2 γ −1
√

b2(z − c) + D3 (3.23)

or the Eckart II potential (for b2 < 0)

Vk(z) = D1 tan γ −1
√

|b2|z sech γ −1
√

|b2|z + D2 sech2 γ −1
√

|b2|z + D3, (3.24)

respectively, where D1 and D2 depend on the parameters b2, b1, b0, a0, a1, c, γ .
(ii) Big q-Laguerre orthogonal polynomials. In this case, solutions of (3.9) are

P n
k (x) = 3φ2

(
q−n, 0,−(

b1
b0

+ (1 − qγ ) c
b0

)
qx

−(
b1
b0

+ (1 − qγ ) c
b0

)
q1−kx1,−

(
b1
b0

+ (1 − qγ ) c
b0

)
q1−kx2

∣∣∣∣q; q

)
(3.25)

and the eigenvalues are

λn
k = qk−n(a0[n − k + 1] − a1[n − k]). (3.26)

In the limit q → 1, equation (3.11) after the change of the variable y = γ 2(a0−a1)

b1
×(

x+ b0
b1

)
can be transformed into the equation for Laguerre’s orthogonal polynomials and its
solution is given by

1P n
k (x) = L(αk)

n (y) = (αk + 1)n

n!
1F1

( −n

αk + 1

∣∣∣∣y
)

, (3.27)

where

αk = γ 2(a0 − a1)b0

b2
1

− γ c + k. (3.28)

After the transformation (3.15) given by

x = γ −2b1

4
z2 − b0

b1
, (3.29)

we obtain the Schrödinger equation with the three-dimensional isotropic harmonic
oscillator potential

Vk(z) = D1z
2 +

D2

z2
+ D3, (3.30)

where D1 and D2 depend on the parameters b1, b0, a0, a1, c, γ .
(iii) Al-Salam–Carlitz II orthogonal polynomials. In this case, solutions of (3.9) are

P n
k (x) =

(
−x1

x2

)n

q(
n

2 )
2φ0

(
q−n,

(
qk

x2

)−1

0

∣∣∣∣q; qk+1

x1
x

)
(3.31)

and the eigenvalues are

λn
k = qk−n(a0[n − k + 1] − a1[n − k]). (3.32)



2034 A Dobrogowska and A Odzijewicz

In the limit q → 1, equation (3.11) after the change of the variable y = ±
√

γ 2(a0−a1)

2b0
×(

x + c
γ (a0−a1)

)
can be transformed into the equation for Hermite orthogonal polynomials

and its solution is given by

1P n
k (x) = Hn(y) = (2y)n 2F0

(− n
2 ,− n−1

2
−

∣∣∣∣ − 1

y2

)
. (3.33)

After the transformation (3.15) given by

x = γ −1
√

b0z, (3.34)

we obtain the Schrödinger equation with the harmonic oscillator potential

Vk(z) = D1z
2 + D2, (3.35)

where D1 and D2 depend on the parameters b0, a0, a1, c, γ .
(iv) Little q-Jacobi orthogonal polynomials. In this case, solutions of (3.9) are

P n
k (x) = 2φ1

(
q−n, qn+1akbk

qdk

∣∣∣∣q;−qk+1 b2

b1
x

)
, (3.36)

where dk = q−k(1 + (1 − qγ ) c
b1

, bk = q−k b1
b2

b2+(1−qγ )[γ ]q−γ (a0−a1)

b1+(1−qγ )c
and the eigenvalues are

λn
k = a0[n − k + 1] − qa1[n − k] +

qγ b2

[γ ]2
[n − k + 1][k − n]. (3.37)

In the limit q → 1, equation (3.11) after the change of the variable y = 2 b2
b1

x + 1 can be
transformed into the equation for the Jacobi orthogonal polynomials and its solution is
given by 1P n

k (x) = P
(αk,βk)
n (y), where

αk = −γ 2(a0 − a1)

b2
+

γ c

b1
− k (3.38)

βk = −k − γ c

b1
. (3.39)

After the transformation (3.15) given by

x = b1

b2
sinh2 γ −1

√
b2

2
(z − c) (3.40)

or

x = b1

b2
sin2 γ −1√|b2|

2
z, (3.41)

we obtain the Schrödinger equation with the Pöschl–Teller II potential (for b2 > 0)

Vk(z) = D1 cosech2 γ −1
√

b2

2
(z − c) + D2 sech2 γ −1

√
b2

2
(z − c) + D3 (3.42)

or the Pöschl–Teller I potential (for b2 < 0)

Vk(z) = D1 cosec2 γ −1√|b2|
2

z + D2 sec2 γ −1√|b2|
2

z + D3, (3.43)

respectively, where D1 and D2 depend on the parameters b2, b1, a0, a1, c, γ .
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(v) Little q-Laguerre/Wall orthogonal polynomials. In this case, solutions of (3.9) are

P n
k (x) = 2φ1

(
q−n, 0

q−k+1(1 + (1 − qγ ) c
b1

∣∣∣∣q;−qk+1 b2

b1
x

)
(3.44)

and the eigenvalues are

λn
k = qk−n(a0[n − k + 1] − a1[n − k]). (3.45)

In the limit q → 1, solution (3.44) gives (3.27). Taking the coordinate transformation
given by (3.14), (3.15) one obtains the case of three-dimensional isotropic harmonic
oscillator potential.

(vi) q-Meixner orthogonal polynomials. In this case, solutions of (3.9) are

P n
k (x) = 2φ1

(
q−n,

qx

y1

− q1−kb0

y1b1

∣∣∣∣q;−qn−k+1 b0

y2b1

)
(3.46)

and the eigenvalues are

λn
k = a0[n − k + 1] − qa1[n − k]. (3.47)

In the limit q → 1, solution (3.46) gives (3.27). Taking the coordinate transformation
given by (3.14), (3.15) one obtains the case of three-dimensional isotropic harmonic
oscillator potential.

(vii) q-Laguerre orthogonal polynomials. In this case, solutions of (3.9) are

P n
k (x) = 1

(q; q)n

2φ1

(
q−n,− (1−qγ )[γ ]q−γ (a0−a1)

b1+(1−qγ )c
x

0

∣∣∣∣∣q;−qn−k+1

(
1 + (1 − qγ )

c

b1

))
(3.48)

and the eigenvalues are

λn
k = a0[n − k + 1] − qa1[n − k]. (3.49)

In the limit q → 1, solution (3.48) gives (3.27) with b0 = 0. Taking the coordinate
transformation given by (3.14), (3.15) one obtains the case of three-dimensional isotropic
harmonic oscillator potential.

(viii) Stieltjes–Wigert orthogonal polynomials. In this case, solutions of (3.9) are

P n
k (x) = 1

(q; q)n

1φ1

(
q−n

0

∣∣∣∣q;−qn−k+1(1 − qγ )[γ ]q−γ a0 − a1

b1

)
(3.50)

and the eigenvalues are

λn
k = a0[n − k + 1] − qa1[n − k]. (3.51)

The limit q → 1 case does not exist.
(ix) Al-Salam–Carlitz II orthogonal polynomials. In this case, solutions of (3.9) are

P n
k (x) =

(
−y2

y1

)n

q−(
n

2)
2φ0

(
q−n,

qx

y1

−
∣∣∣∣q;−qn y1

y2

)
(3.52)

and the eigenvalues are

λn
k = a0[n − k + 1] − qa1[n − k]. (3.53)

In the limit q → 1, solution (3.52) gives (3.33). Taking the coordinate transformation
given by (3.14), (3.15) one obtains the case of the harmonic oscillator potential.

In the papers [1–5], one can find the solutions for different models of the q-deformed harmonic
oscillator.
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